Free-radical degradation of high-molecular-weight hyaluronan induced by ascorbate plus cupric ions. Testing of bucillamine and its SA981-metabolite as antioxidants

Katarína Valachová a,*, Eva Hrabárová b, Elena Priesolová c, Milan Nagy c, Mária Baňasová a, Ivo Juránek a, Ladislav Šoltés a

a Institute of Experimental Pharmacology and Toxicology, Slovak Academy of Sciences, SK-84104 Bratislava, Slovakia
b Institute of Chemistry, Department of Carbohydrate Enzymology, Slovak Academy of Sciences, SK-84535 Bratislava, Slovakia
c Faculty of Pharmacy, Comenius University, SK-82332 Bratislava, Slovakia

A R T I C L E I N F O

Article history:
Received 2 March 2011
Received in revised form 17 June 2011
Accepted 21 June 2011
Available online 28 June 2011

Keywords:
ABTS and DPPH assays
Disease-modifying anti-rheumatic drugs
t-Cysteine
Reactive oxygen species
Rotational viscometry

A B S T R A C T

High-molecular-weight hyaluronan (HA) samples were exposed to free-radical chain-degradation reactions induced by ascorbate in the presence of Cu(II) ions – the so-called Weissberger’s oxidative system. The concentrations of both reactants [ascorbate, Cu(II)] were comparable to those that may occur during an early stage of the acute phase of joint inflammation. The time-dependent changes of the viscosity of the HA solution in the absence of the substance tested were monitored by rotational viscometry. However, when the anti- or pro-oxidative effects of the antioxidants/drugs were investigated, their dose-dependency was also examined. Additionally, the anti-oxidative activities of these substances were screened by the well-established ABTS and DPPH decolorization assays. The actions of the disease-modifying anti-rheumatic drugs, namely bucillamine and N-penicillamine, were compared to those of t-cysteine and of SA981, the oxidized metabolite of bucillamine.

The results indicated that bucillamine was the most efficient scavenger of hydroxyl- and/or peroxyl-type radicals, even at the lowest drug concentration. In contrast, SA981 demonstrated no scavenging activity against the aforementioned free radicals. N-Penicillamine and t-cysteine showed a dual effect, i.e. a pronounced anti-oxidative effect was, after a given time period, followed by a significant pro-oxidative effect.

1. Introduction

Hyaluronan (Fig. 1a; HA) is a unique glycosaminoglycan (GAG) composed of regularly alternating units of N-acetyl-d-glucosamine and d-glucuronic acid linked by β-(1 → 4) and β-(1 → 3) linkages. HA is widely distributed in vertebrates. Its molecular size can reach values of up to 107 Da [1]. A 70 kg individual has approximately 15 g of HA. This GAG is characterized by an extraordinarily high rate of turnover; one third of its total amount turning over daily. High-molecular-weight HA, whose physiological level within synovial fluid (SF) is 2–3 mg/mL [2], accounts for its important viscoelasticity.

Degradation of high-molecular-weight HA occurring under inflammation and/or oxidative stress is accompanied by impairment and loss of its viscoelastic properties [3]. Low-molecular-weight HA was found to exert different biological activities compared to the native high-molecular-weight biopolymer. HA chains of 25–50 disaccharide units are inflammatory, immunostimulatory, and highly angiogenic. HA fragments of this size appear to function as endogenous danger signals, reflecting tissues under stress [4,5].

Bucillamine [Fig. 1b, N-(2-mercapto-2-methylpropionyl)-t-cysteine] is classified as a disease-modifying anti-rheumatic drug (DMARD). It is prescribed in Japan and South Korea for the treatment of rheumatoid arthritis (RA). In vitro studies demonstrated positive effects of bucillamine, such as attenuation of various types of reperfusion injury, inhibition of T cell proliferation, cytokine production, etc. Some animal studies suggest that bucillamine may attenuate damage during myocardial infarction, cardiac surgery, and other acute inflammatory disorders.

Several investigations have demonstrated the efficacy of bucillamine, administered orally for the treatment of RA. The drug was taken daily by patients in doses ranging from 100 to 300 mg/day, but occasionally as high as 600 mg/day. Serum measurements confirmed good oral bioavailability of bucillamine [6,7]. However, as

© 2011 Elsevier B.V. All rights reserved.
already shown, the concentration of the main bucillamine metabolite – SA981 (cf. Fig. 1c) – significantly exceeds that of the parent drug both in serum and in SF of patients treated for RA [8].

D-Penicillamine (Fig. 1d, D-pen, β/β-dimethylcysteine), a metabolite of penicillin, is a DMARD currently used also for the treatment of Wilson's disease. Whereas the D-enantiomer is therapeutic, the L-enantiomer is highly toxic [9,10]. In vitro studies have shown that D-pen may scavenge free radicals released by activated neutrophils and also inhibit release of the enzyme myeloperoxidase; thus it reduces local tissue damage [9]. The typical daily oral dose of D-pen administered to RA patients is 0.5–2.0 g. The serum half-life of a single oral dose of the drug is 1–3 h [11].

L-Cysteine (Fig. 1e), a naturally occurring amino acid, contributes to the intracellular thiol pool and is a precursor of intracellular l-glutathione biosynthesis [6,12,13]. This amino acid, when used as a nutritional supplement, is usually taken up in the form of N-acetyl-L-cysteine [14]. As reported, the mean concentration of L-cysteine in normal human plasma is in the micromolar range (≈ 8 µM [15]). The availability of L-cysteine in body fluids is low, since in vivo L-cysteine is rapidly oxidized to cystine [12].

The aim of this contribution was to present results obtained on investigating the effects of two thiol drugs, namely D-penicillamine and bucillamine, the bucillamine oxidized metabolite SA981 and the endogenous substance – L-cysteine – on the degradation kinetics of a high-molecular-weight HA in vitro. As a free-radical inducer, the well-known Weissberger’s oxidative system [ascorbate plus Cu(II) ions] was applied, simulating thus the early phase of acute synovial joint inflammation. Additionally, the anti-oxidative activity of the drug was screened using the well-established ABTS and DPPH decolorization assays.

2. Materials and methods

2.1. Biopolymers

The two high-molecular-weight HA samples P9710-2A (M_w = 808.7 kDa; M_w/M_n = 1.63) and P0207-1 (M_w = 1.07 M Da; M_w/M_n = 1.60) were obtained from Lifecore Biomedical Inc., Chaska, MN, U.S.A. [16].

2.2. Chemicals

Analytical purity grade NaCl and CuCl_2·2H_2O were purchased from Slavus Ltd., Bratislava, Slovakia.

D-Penicillamine, L-cysteine, 2,2′-azinobis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS; purum, >99%), and 2,2-diphenyl-1-picrylhydrazyl (DPPH) were the products of Sigma–Aldrich, Steinheim, Germany. Bucillamine and SA981 were gifts of Santen Pharmaceutical Co., Osaka, Japan. Potassium persulfate (p.a. purity; max 0.001% nitrogen) and l-ascorbic acid were the products of Merck KGaA, Darmstadt, Germany. Ethanol (96%) and distilled methanol, both p.a. purity grade, were purchased from Merck, Darmstadt, Germany. Redistilled deionized high quality grade water, with conductivity of <0.055 mS/cm, was produced using the TKA water purification system from Water Purification Systems GmbH, Niederehel, Germany.

2.3. Preparation of stock solutions

The HA sample solutions (2.5 mg/mL) were prepared in the dark at room temperature in 0.15 M aqueous NaCl in two steps: first 4.0 mL of the solvent and after 6 h 3.85, 3.80, or 3.70 mL of the solvent were added. The stock solutions of L-ascorbic acid, L-cysteine, SA981 (all as 16 mM), bucillamine, D-penicillamine (both as 32 mM), and cupric chloride (16 mM diluted to a 160 µM solution) were also prepared in 0.15 M aqueous NaCl.

2.4. Study of uninhibited/inhibited hyaluronan degradation

The procedures related to the study of the degradation of high-molecular-weight HA in the absence and presence of the antioxidant/drug tested were previously described [17–20].
2.5. Rotational viscometry

The resulting reaction mixture (8.0 mL) was transferred to the Teflon® cup reservoir of a Brookfield LVDV-II+ PRO digital rotational viscometer (Brookfield Engineering Labs., Inc., Middleboro, MA, U.S.A.). The recording of viscometer output parameters started 2 min after onset of the experiment. Changes in dynamic viscosity of the reaction mixture were measured at 25.0 ± 0.1 °C in 3-min intervals for up to 5 h. The viscometer Teflon® spindle rotated at 180 rpm, i.e. at a shear rate of 237.6 s⁻¹.

2.6. ABTS and DPPH assays

The standard experimental procedures have been reported [21,22]. Briefly, the aqueous solution of ABTS⁺ radical cation was prepared 24 h before the measurement at room temperature as follows: ABTS aqueous solution (7 mM) was mixed with K₂S₂O₈ aqueous solution (2.45 mM) in equimolar ratio. The following day, 1.1 mL of the pre-formed stock aqueous solution was diluted with 96% ethanol to a final volume of 50 mL. Of this ethanol-aqueous reagent 250 μL was added to 2.5 μL of the ethanolic solution of bucillamine, SA981, L-cysteine, or D- pen – the concentration of each was 101 mM. The absorbance of the sample mixture was measured at 734 nm 6 min after mixing the reactants.

In the DPPH assay, the DPPH⁺ solution (55 μM) was prepared by dissolving DPPH in distilled methanol. Then 225 μL of the above mentioned DPPH⁺ radical solution was added to 25 μL of the methanolic solutions of bucillamine, SA981, L-cysteine, or D- pen – the concentration of each was 10 mM. The absorbance of the sample mixtures was measured at 517 nm 30 min after mixing the reactants.

In both assay methods, the substances were tested in a concentration range of 1 mM–8 μM. The measurements were performed in quadruplicate in a 96-well Greiner UV-STAR microplates (Greiner-Bio-One GmbH, Germany) with Tecan Infinite M 200 reader (Tecn AG, Austria). The IC₅₀ values were calculated using CompuSyn 1.0.1 software (CompuSyn Inc., Paramus, USA). Ionic fractions and log D values of bucillamine, SA981, L-cysteine or D-pen were calculated by free webservice: http://www.pharma-algorithms.com/webboxes/.

3. Results

3.1. ABTS and DPPH assays

The bucillamine scavenging activities, represented by the IC₅₀ values of 4.00 and 8.96 μM as determined by the ABTS and DPPH assays (cf. Table 1), were greatly elevated. The drug IC₅₀ values were comparable to those for quercetin, a substance typically classified as a standard natural antioxidant: 2.86 and 4.36 μM. (For determining the quercetin scavenging activity, ABTS and DPPH assays were carried out under conditions identical to those in Section 2.6.)

Table 1

<table>
<thead>
<tr>
<th>Substance</th>
<th>ABTS, IC₅₀ [μM]</th>
<th>DPPH, IC₅₀ [μM]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bucillamine</td>
<td>4.00</td>
<td>8.96</td>
</tr>
<tr>
<td>SA981</td>
<td>Not detectable</td>
<td>Not detectable</td>
</tr>
<tr>
<td>D-Penicillamine</td>
<td>5.26</td>
<td>35.8</td>
</tr>
<tr>
<td>L-Cysteine</td>
<td>1300</td>
<td>303</td>
</tr>
</tbody>
</table>

3.2. Rotational viscometry

It is well documented that concentration of copper ions is significantly higher in plasma and SF of RA patients [23]. In the early phase of acute joint inflammation, levels of acute phase proteins are elevated. One of these proteins, ceruloplasmin, releases two loosely bound atoms of Cu ions. Weissberger’s oxidative system ascorbate plus Cu(II) can be applied for in vitro studies simulating the conditions that occur in the early stage of joint inflammation. The initial viscosity of the solution of high-molecular-weight HA gradually decreases when a generator of e.g. *OH radicals is introduced. As documented in Fig. 2, panels A and B, curve 0, an increased rate of degradation of HA was observed. However, addition of bucillamine protected HA against free-radical degradation in a dose-dependent manner, either when the drug was applied at the experiment onset – at time 0 min – or 1 h after onset of the reaction (cf. Fig. 2, panels A and B, curve 4).

In Fig. 2, bucillamine can be observed to be not only a preventive antioxidant, but also as an efficient chain-breaking antioxidant. The latter, inhibition of the free-radical chain reaction, confirmed this property of bucillamine. This drug, containing two free –SH groups, may function both as a scavenger of free hydroxyl- and peroxytype radicals by inhibiting the propagation phase of the deleterious radical chain reaction. Simultaneously, bucillamine may significantly attenuate the re-initiation of the “firing up” reaction by chelating Cu ions.

The fact that bucillamine scavenges hydroxyl- and peroxy-type radicals as well as donating one or most plausibly two hydrogen radicals (H⁺) results in the generation of the SA981 compound, which exhibits practically no reducing power (cf. Table 1). The results displayed in Fig. 3, panel A reflect precisely this expectation. The greater the level of SA981 added to the reaction mixture at time 0, the greater is the protection of HA from degradation initiated by *OH radicals. This effect could be attributed plausibly to abstraction

![Fig. 2](image-url) Effect of bucillamine on HA degradation induced by the oxidative system containing 1.0 μM CuCl₂ + 100 μM ascorbic acid. Concentrations of bucillamine in the system before the start of HA degradation (A) or after 1 h (B) in μM: 0 (0); 1 (1); 10 (2); 50 (3); and 100 (4).
of an H\(^+\) radical from the SA981 molecule, resulting partly in scavenging of •OH radicals. Yet as shown in Fig. 3, panel B the substance SA981 did not scavenge peroxyl-type radicals even at the highest concentration applied.

For comparison, Fig. 4 demonstrates the efficacy of \(\text{d-pen.}\) In panel A the curve 2 demonstrates the inhibitory effect of the drug against HA degradation for up to 60 min. Furthermore, a significant decrease of the viscosity of the biopolymer solution was observed. On comparing the shapes of curves 1 and 2 with that of 0, a significant enhancement of the HA degrading process was detected.

Fig. 4, panel B, curve 2 demonstrates that at the highest \(\text{l-cysteine}\) concentration, 100 \(\mu\text{M}\), total inhibition of HA degradation was observed for approx. 2 h, while afterwards the inhibitory process was proceeding in part, by a significant reduction of HA degradation. When, however, a lower amount of \(\text{l-cysteine}\) (50 \(\mu\text{M}\)) was applied, a pro-oxidative effect of this amino acid was observed (cf. Fig. 4, panel B, curve 1).

4. Discussion

4.1. ABTS and DPPH assays

The decolorization of the ABTS\(^+\) radical cation solution or that of the DPPH\(^+\) radical can be described by the chemical reactions during which a reductant provides an electron to the acceptor – the ABTS\(^+\) radical cation or of the DPPH\(^+\) radical. The reductant, which in the case of thiol-derived compounds could be described as \(\text{R-SH}\), is oxidized as follows

\[\text{R-SH} - \text{e}^- \rightarrow \text{R-S}\text{H} + \text{H}^+\]

Hence the chemical structure of bucillamine (cf. Fig. 1b) establishes this drug to be a highly efficient reducing agent. In the case of providing the electrons from both \(\text{–SH}\) groups, bucillamine could “metabolize” to its oxidized form, named SA981. Yet since the SA981 compound has no further freely “decomposable” thiol group(s) in its structure, this substance has no or only a weak reducing power. As revealed by the ABTS and DPPH assays, this statement is also supported by the undetectable scavenging activity of SA981 (cf. Table 1).

The scavenging activities determined using both ABTS and DPPH assays indicate that \(\text{l-cysteine}\) can be indeed classified as a poor electron donor. The IC\(_{50}\) values determined for this amino acid significantly exceeded those found for both drugs, i.e. \(\text{d-pen.}\) and bucillamine (cf. Table 1). However, it should be pointed out that the readiness of a thiol compound to provide an electron does not indicate that the substance is simultaneously a donor of the H\(^+\) radical. Steric factors, degree of protonation, and some further determinants may considerably influence the availability of H\(^+\) radical to be abstracted from the \(\text{–SH}\) group of the given thiol substance. Thus the readiness of the H\(^+\) radical donation is another factor that should be taken into account when the given thiol substance/drug is to be used against generating free radicals, such as those of the hydroxyl- and peroxyl-types.

4.2. Uninhibited degradation of high-molecular-weight hyaluronan

Under aerobic conditions, the bicomponent system composed of ascorbate and cupric ions is generating a powerful oxidant – hydrogen peroxide [24–26]. To describe the particular processes involved, the following flow chart, which characterizes the indi-
individual reaction steps, represents the concerted action:

\[
\text{AscH}^- + \text{Cu(II)} \rightarrow \text{Asc}^*^- + \text{H}^+ + \text{Cu(I)},
\]

reduction of cupric to cuprous ions

Ascorbate (AscH\(^-\)) donates H\(^+\) radical or (H\(^+\) + e\(^-\)) yielding the tricarbonyl ascorbate free radical, which in aqueous solution should be present as Asc\(^-\) \[27\]. The generated unstable cuprous ions quickly undergo a charge stabilization interaction by an excess of ascorbate:

\[
\text{AscH}^- + \text{Cu(I)} \rightarrow [\text{AscH}^- \cdot \text{Cu(I)}].
\]

This intermediate participates in the next bi-electron reduction of the dioxygen molecule (O\(_2\) = O)

\[
[\text{AscH}^- \cdot \text{Cu(I)}] + \text{O}_2 = \text{O} + \text{H}^+ \rightarrow \text{Asc}^*^- + \text{Cu(II)} + \text{H}_2\text{O}_2,
\]

hydrogen peroxide formation

and the nascent \(\text{H}_2\text{O}_2\) molecule is decomposed immediately by the “uncomplexed”/complexed Cu(I) ion(s) according to a Fenton-like reaction:

\[
\text{H}_2\text{O}_2 + [\text{Cu(I)}] \rightarrow \text{OH}^- + \text{HO}^- + \text{Cu(II)},
\]

generation of hydroxyl radicals

Finally, the following net reaction indicates the generation of extremely reactive hydroxyl radicals:

\[
\text{AscH}^- + [\text{AscH}^- \cdot \text{Cu(I)}] + \text{O}_2 = 2\text{Asc}^*^- + \text{Cu(II)} + \text{HO}^- + \cdot \text{OH},
\]

(net reaction)

However, since at the beginning of the reaction within the system of reactants there is an ascorbate excess, the generated nascent \(\cdot \text{OH}\) radicals are continually scavenged. According to our previous findings based on spin-trapping EPR spectroscopy [28], under the experimental conditions (Figs. 2 and 3, curve 0) shown during the earlier time intervals (≤60 min, Fig. 2 or ≤30 min, Fig. 3), monitoring the sole generation of the ascorbyl anion radicals (Asc\(^\cdot\)) indicated that any nascent \(\cdot \text{OH}\) radical generated is scavenged immediately. Yet at later time intervals – from approx. 30 or 60 to 300 min – clear evidence of the presence of scavenged \(\cdot \text{OH}\) radicals was found by the spin-trapping EPR spectroscopic method. The trace fraction of nascent \(\cdot \text{OH}\) radicals reacts with the HA macromolecule by abstracting H\(^+\) radical, resulting in the formation of a C-macroradical represented in Scheme 1 [29], further denoted as \(\text{A}^*\):

\[
\text{HA} + \cdot \text{OH} \rightarrow \text{A}^* + \text{H}_2\text{O}
\]

Under aerobic conditions, the alkyl-type macroradical – \(\text{A}^*\) – reacts rapidly with the molecule of dioxygen (O\(_2\)) yielding a peroxyl-type macroradical, hereafter denoted as \(\text{AOO}^*\). The formed intermediate \(\text{AOO}^*\) may react with an adjacent HA macromolecule – and in that way the radical chain reaction propagates rapidly:

\[
\text{AOO}^* + \text{HA} \rightarrow \text{AOOH} + \text{A}^*,
\]

propagation of the radical chain reaction

After its “collision” with an HA macromolecule (cf. reaction (5)), the generated peroxyl-type macro-radicals yields a high-molecular-weight hydroperoxide (AOOH), which subsequently, mostly induced by the present Cu(I) ions \(\{\text{AOOH} + \text{Cu(I)} \rightarrow \text{AO}^* + \text{HO}^- + \text{Cu(II)}\}\), yields an alkoxyl-type macro-radical (\(\text{AO}^*\)). This is a presumed intermediate of the main chain-cleavage resulting in biopolymer fragments. Their solution is characterized by a reduced viscosity, represented in Scheme 2 [30,31].

The attack of hydroxyl radicals on \(\alpha\)-glucuronate or \(\alpha\)-acetyl-\(\alpha\)-glucosamine moieties of HA can also lead to the “opening” of rings without breaking the polymer chain [31,32].

4.3. Inhibited degradation of high-molecular-weight hyaluronan

In accord with previously presented data, it is evident that an efficient antioxidant (donor of H\(^+\) radical) may retard or even totally inhibit the step of HA degradation initiation by scavenging all \(\cdot \text{OH}\) radicals. Thus no \(\text{A}^*\) type macro-radicals are generated. Such substances efficiently stop both the initiation and the propagation of the free-radical reaction and are therefore classified as preventive antioxidants. When however these substances significantly retard or even totally inhibit the free-radical reaction in its phase of propagation, they are classified as chain-breaking antioxidants.

According to this classification, it is obvious that bucillamine is both a preventive and chain-breaking antioxidant. Yet its metabolite, SA981, demonstrated no significant protective effect against HA degradation in the Weissberger oxidative system.

By taking into account the IC\(_{50}\) values determined for d-pen (cf. Table 1), a relatively high electron donating capability can be stated for this DMARD. Moreover, the chemical structure (see Fig. 1d) indicates a potential of d-pen to donate one H\(^+\) radical and thus to act as
a scavenger of 'OH radicals generated by the Weissberger oxidative system. The latter tenet is however only partially correct.

To explain the results presented in Fig. 4, the following sets of reactions should be considered as valid:

\[
R-SH + \cdot OH \rightarrow R-S^- + H_2O, \quad \text{formation of a thiyl-type radical}
\]

\[
R-SH \rightarrow R-S^-, \quad \text{ionization of the thiyl functional group}
\]

\[
R-S^+ + R-S^- \rightarrow [R-SS-R]^{\cdot}, \quad \text{generation of an anion radical intermediate substance}
\]

\[
[R-SS-R]^{\cdot} + O_2 \rightarrow [R-SS-R] + O_2^{\cdot-}, \quad \text{formation of superoxide anion radical}
\]

\[
O_2^{\cdot-} + O_2^{\cdot-} + 2H^+ \rightarrow H_2O_2 + O_2, \quad \text{dismutation reaction, generation of hydrogen peroxide}
\]

The powerful oxidant such as H_2O_2 subsequently undergoes reaction (3) generating 'OH radicals. The above sets of reactions are well established for several additional thiol-derived substances, including glutathione (G–SH) yielding [G–SS–G]^{\cdot-} – the oxidized glutathione anion radical [16,19,20,33–35].

Finally, according to the IC_{50} values determined for L-cysteine (cf. Table 1), practically no electron donating capability can be claimed for this amino acid. Yet in accordance with its chemical structure, this thiol-derived amino acid can be a donor of H^+, yielding, analogous to d-pen, a thiol-derived free radical substance of the formula R–S^*.

In conclusion, the observations of this study could support further efforts to prove or disprove the anti- and/or pro-oxidative participation of thiol-derived antioxidants/drugs in free-radical HA degradation initiated by the ascorbate plus Cu(II) system. The opposing pro- and anti-oxidative properties of d-penicillamine may be relevant to its toxic or to its therapeutic properties.

Acknowledgements

The work was supported by the VEGA Grant Project Nos.: 2/0011/11, 2/0083/09, 2/0056/10, 1/0145/10. This contribution is the result of the project implementations: ITMS26220120054 and ITMS26240220040 supported by the Research & Development Operational Programme funded by the ERDF.

We thank Dr. Fumio Tsuji from Santen Pharmaceutical Co., Ltd. Osaka, Japan for providing bucillamine and its metabolite SA981 and Prof. Robert Stern for critical reading and commenting our paper.

References

